Solutions to Question Sheet 8, Differentiation III. v1 2019-20

Taylor Polynomials

If f has n derivatives at a € R then

") (g
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There are four questions asking you to calculating Taylor polynomials
and they all highlight a method that should simplify the work needed and
cut down the opportunity of making an error.

1. Calculate the Taylor polynomial

sinx + cosx
T6’0 (—) .
1+

Hint Multiply up so you don’t have to differentiate rational functions.

Solution Let .
SiInx + cosx

flo) =252

We don’t like fractions so multiply up and consider

(14 x) f(x) =sinz + cos z.

We will differentiate this repeatedly to get

(14 2) fO(x) + f(xr) = cosx —sinz
14+ 2) fP)+2fWV(z) = —sinz —cosz
1+2z) fO

= sinx + cosz

)

)

) = —cosz+sinz
)

) = cosz —sinz
)

= —sinx — CcosZ.



Put x =0 to get

Solving these we find f(0) = 1, fM(0) =0, f@(0) = -1, f®(0) = 2,
f@0) = -7, f®(0) = 36 and f©(0) = —217.

Hence
sinx + cos x x? x3 xt xd 20
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. Calculate the Taylor polynomial

T (sinzcoshz) .

Hint Look for a pattern in your derivatives. For the trigonometric
functions sin z and cos x you return to a function related to the original
function after differentiation at most 4 times. For hyperbolic functions
it is after 2 differentiations. Thus for f that are products of such
functions you might hope to see some connection between f and f(*).



Solution Let f(z) = sinz coshx. Then

fYz) = coszcoshz + sinasinh z,
f@(z) = —sinzcoshz + coszsinhz
+coszsinhz + sinx cosh
= 2coszxsinhzx,
fOz) = —2sinzsinhz 4 2cosxcoshz,
fW(x) = —2coszsinhx — 2sinx coshz
—2sinx cosha + 2 cos w sinh

= —4sinzxcoshx = —4f(z).

From f®(z) = —4f (.:E we quickly get

)
) (a) (
) (z) (
D(a) = —4fO(a
®(z) (

X

f2(0) =0, f(0) = 2, f9(0) =0,

Hence f(0) = 0, fM(0 7
= (0) = =8 and f®(0) = 0. Thus

) =
FP(0) = =4, fO0) =0, /7

1 1 1
Tso(sinzcoshz) = 0+ lz+ 02 + §x3 + 0zt — %x‘r’ + 025 — @:f + 02®
s 15 L 7

. Calculate the Taylor polynomial

T570 (esin m) '

Hint Let f(x) = 5% and, because of the exponential function satisfies
de® /dx = €, look for a connection between f and f()

Solution Let f(z) = e¥"®. Then by the Composition Rule for differ-
entiation ‘
fV(z) = e cosz = f(x)cosz.



= f9(@)cos = 31D (@)sinz — 37 (@) cosz + f(x) sinz

Hopefully you can see a pattern (reminiscent of the Binomial Theo-
rem?) and the next in the list will be

fO(z) = fD(z) cosa—4f®) (x) sinz—6fP (z) cos x4+4f Y (z) sin 2+ f (z) cos z.

Putting = 0 and we find f(0) =1, f/(0) = 1 and

f20) = fO0) =1
fP0) = f@0)-f(0)=0
fP0) = f90) =310 = -3,
fO0) = fD0)-6f20)+ f(0)=-3-6+1= -8
Thus ) . 5
Tso (%) = 1+x+% - %—%.

. Calculate the Taylor Polynomial

1+

Hint Again look at multiplying up and writing a derivative in terms
of earlier derivatives.

Solution Let In1 )
n(l+x
J@) ==



Follow the hint and write (1 + z) f(z) = In(1 + z). Then, taking the

derivative,
1

1+z

f@) + (1 +) fO(2) =

Follow the hint yet again, and multiply up as
(142) flx)+ A +2) fO)=1.
Repeated differentiation gives

f@)+3(1+a) fO)+ (L+a) fPa) = 0,
AfD(@) +5(1+2) fP)+ (1 +2)° fO%) = 0,
9fP @)+ 70 +2) fO%)+ (1 +2) fD@) = 0.

Substituting x = 0 gives

O+ 0 = 1,

F(0) +3fD(0) + f2(0) = o,
4f0(0) +5£2(0) + £(0) = 0,
9P (0) + 7fD(0) + fP(0) = o.

Starting with f(0) = 0 we get fM(0) = 1, fP(0) = =3, f3(0) =
—4+15 =11 and f®(0) = 27 — 77 = —50.

Hence
In(1+ ) z? z3 xt
Ty [ —— ) = 3T 50t
4’0< 1+ ) 0o =g+ gy =505,
3 11 25
= I — 5.%’2 + E.CES — ELE4.



Error Terms

The Remainder or Error Term in approximating a function by it’s Taylor
Polynomial is given by

Ryof (2) = f(2) = Thaf(x).

In the notes we give bounds on R, ,f(z) which thus tell us how well
T,of(x) approximates f(z). This is the subject of the next three questions.
But we can also deduce something from knowing that R, ,f(z) is of constant
sign as x varies; we get inequalities between f(z) and T, .f ().

5. i. Prove that 5

. +£E 1
SsIr —xI —
6

4
< g lelt, 1)

for all x € R.
Hint the left hand side is |R3 (sin ).

ii. Deduce (without L’Hopital’s Rule) that

. sinzx —=x 1
im —m = ——.
x—0 {173 6

Solution i. It is easy to check that

3

: T
T30 (sinz) =z — i
SO
3
sine —x+ — =sinz — T3¢ (sinz) = Rz (sinz).

3!

Let f(z) = sinz, then Lagrange’s form of the error gives

(4)
R3q (sinz) = f—(c)x4,
’ 41
for some ¢ between z and 0. Yet |f®(c)| = |sinc| < 1, giving the

stated resultm (1).



ii. Dividing through the stated result by |z| gives

sinr — x 1 < 1
3 31 = Zm
Let x — 0 and we get
sinxz — x 1
lim —— = ——,
x—0 1‘3 6

by quoting the Sandwich Rule.

. For flx) =1n (1 + z), find the Taylor polynomial 75, f (x) and calculate
T50/(0.2).

Use Lagrange’s form of the error for the remainder to estimate the error
in using 75 f(0.2) to calculate In1.2.

Hence show that

0.18232000... < In1.2 < 0.18232709... .

Solution Repeated differentiation gives us

f(@) =Tn(1 + ), 1(0) =0,
FO) = 00 =1,
FO@) =~ F0) = -1,
@ = 5 fm)g 90 =2,
9@ =~ 79(0) = -6,
fO(x) = q _2::)5 FO(0) = 24
Thus ) . . 5
Tofl)=w-5+5 -7 +5



The approximation to f(0.2) = Inl.2 given by this polynomial is

0.2 (0.2  (02)"  (0.2)°

= 0.18233066... .

Also f®(z) = =51/ (1 + 2)® and so Lagrange’s form of the error is

6
Rsof(x) = m,

for some ¢ between 0 and . With = 0.2 then 1/1.2 <1/(1+¢) <1
and thus

(0.2)° (0.2)°
— < R 0.2) < — .
6 50/(02) 6(1.2)°
That is,
—0.00001066... < In1.2 — T £(0.2) < —0.0000035722... .
Hence

0.18232000... < Inl1.2 < 0.18232709... .

In fact In1.2 = 0182321556....

. Use Taylor’s Theorem with f(z) = v/« on [64,66] and n = 1 along with
Lagrange’s form of the error to show that

Solution With f(z) = v/z, n =1, a = 64 and Lagrange’s form of the
error, Taylor’s Theorem states

f2 ()
2l

Rigaf(z) = (z — 64)2 ’

for some ¢ between 64 and x. That is




or

fla) = f(64) + fU (64) (« — 64) +
With f(z) = /x we get

B (x—64) (z—64)°
VT =64+ NG o

Take = 66 when 64 < ¢ < 66 and

(66 —64) (66—-64)°> 1 1
V66— V64 = 21/64 8c3/2 8 23/

To simplify matters think of ¢ as lying between 64 and 81 (the smallest
square larger than 66), so

1 - 1 - 1
1458 ~ 2¢3/2 7 1024°

Thus ] ]
S o < VI VET< -
In fact,
Vg Lr___ 1
8 1039.938...

Taylor Series

8. Calculate the Taylor Series for x cosh x 4 sinh z with a = 0.

Solution i) Let f(z) = x coshx + sinhz. Then

D(z) = wxsinhz +2coshz
@(z) = xcoshz + 3sinhz
f(3 (x) xsinhz + 4 coshx
W(z) = xcoshz + 5sinhz
®)(z) = wxsinhz + 6coshx



The pattern is
xsinhx + (r 4+ 1)coshx if r is odd
fO(@) =

xcoshx + (r+ 1)sinhz if r is even.

Thus
(r+1) if ris odd
£0) =

0 if 7 is even.

Hence the Taylor Series for x cosh z 4 sinh x with a = 0 is

o r x r o 2( + 1)
()L — nr - 2nt1
WAUEA SRIERS ot A2 B
= r odd "=
The first few terms are
1 1

2 1
20+ a2 + —a° + z + 20+ .

3 20 630 36288

. Prove that the Taylor series for cosine converges to cosz, i.e.

for all z € R.

Solution Let f(z) = cosz. Let x € R be given. Then for n > 1

f(n+1) c) .
R, (cosx) = (nTl()')x 1
for some ¢ between z and 0. Yet |f("+1)(c)} is either [sinc| or |cosc|,
both of which are < 1. Thus

|$|n+1

|R.0 (cosx)| < CE]

—0

as n — 00, since {|a:]"+1/(n+ 1)1} ., is a null sequence. Hence

R, (cosz) — 0 as n — oo and so the Taylor series for cosine con-
verges to cosx for all x € R.

10



10.

Additional Questions

Assume the function f is n+ 1 times differentiable with f*1 contin-
uous on an open interval containing a € R. Prove that

- Tn a - Tn a (n+1)
g 200 = Taad @) S = Tl (@) ()
ava (z—a) e (g —a)™" (n+1)!

(2)

Hint Consider Lagrange’s error.
Note these limits in special cases have been seen many times before.

(a) f(z) =sinz with Ty (sinz) = z is the subject of Question 5,

(b) f(z) = e” with T3 (€”) = 1 + x4+ 2%/2 is the subject of Question
9 on Sheet 3.

(¢) f(x) = sinhax with Th( (sinhz) = x is the subject of the same
question. To check that earlier answer

lim sinhz —z lim sinhx — Ty (sinh x)
z—0 3 a0 3
1 &
= — — (sinhx) by (2)
3! da? =0
1
=

Solution For x lying in the interval around @ in which f has n + 1
derivatives Lagrange’s error states that

f(n-i—l)(c) (.Z‘ o a)n+1

f(flf) - Tn,af(aj) = Rn,tlf('qj) = (n + 1)!

for some c lying between a and x. Therefore, for z # a,

f@) = Toof(x) _ fUD(c)
(1‘ . CL)nJrl - (n + 1)! : (3)

Let x — a. Since c lies between a and x we also have ¢ — a. We
are assuming f™*1) is continuous at a so lim._, f"V(c) = O+ (a).

Hence
f@) = Thaf(x)  f"(a)

lim = .
r—a (l‘ — a>n+1 (n + 1)'

11



11.

Then, rearranging (3),
f(a) = Thaf(2) _ fUD ()

(x —a)" - (n+1)! (x—a)=0

as r — a, having used the Product Rule for limits, allowable since each
individual limit exists.

i. Prove that 2" R, o (¢*) > 0 for all z € R.

Deduce that for all m > 1 we have

e’ > Thm_10(€%)

for all z € R, while

Note this answers a question in the printed lecture notes, of showing

that

2 333

T
T > - -
€21ttt

for all z € R while

x? x?
e$>1+x+Eifx>O and e$<1—|—x—|—?ifx<0.

ii. Prove that (—=1)" 2" ™ R, o (In(1+)) > 0 for all x > —1.
Deduce that for all n > 1,
In(1+2z)<T,o(In(l+z))

for —1 < < 0 while if z > 0 then

In(1+2z)<T,o(In(l+=z)) foroddn
In(14+xz)>Tho(ln(1+x)) foreven n.

12



Note These last results for z > 0 can be combined in
Tomo(In(1+2)) <In(1+2) <Thniro(In(l+2x))

for all m > 1. The case m = 1 is the content of Question 6, Sheet 7.

Solution i. For all x € R there exists, by Lagrange’s form of the error
term, some ¢ between 0 and x such that

T\ __ n+1
R (") = (n+ 1)'x
Then .
n x € n+1
"R, (") = 1 1) (z?) >0, (4)

for all x € R, since e® > 0 for all c.
There are two cases.

If n is odd then n+1 is even so 2" > 0 for all z. Thus, by (4),
R, (e”) > 0. Writing n = 2m—1 this implies * > T, o (e*) for all
z € R.

If n is even then z"t! > 0 for all z > 0 and 2" < 0 for all = < 0.
Thus, by (4), Rupo(e*) > 0if 2 > 0 and R, (e”) <0 if x < 0. Writing
n = 2m this implies e* > Ty, ¢ (€*) for z > 0 and e < Ty, 0 (e) for
r < 0.

ii. For all z € R there exists, by Lagrange’s form of the error term,
some ¢ between 0 and x such that

(~1)" o

Bno(In(1+2)) = (n+1) (1—|—c)n+1.

Then
(xz)n-i-l

(n+1) (1+¢)" ™ ~

(=1)" 2" R,o(In(1+2)) =

for all x > —1, since 1+c¢ >0 forc >z > —1..

There are two cases.

If n is odd then (5) implies "R, (In(1+z)) < 0 for z > —1.
Again 2" > 0 for all  so R,o(In(1+x)) <0 for x > —1.

13



Writing n = 2m — 1 this implies
In(1+2) <Topmo1o(In(l+2))

for x > —1.

If n is even then (5) implies 2" R, o (In (1 + 2)) > 0. As in Part i,
2"t > 0 for all # > 0 and 2" < 0 for all =1 < 2 < 0. Writing
n = 2m these imply
R2m,0 (hl (1 -+ LU))
Ropmo(In(1+2)) < 0 for —1<x<0.

v

0 for = >0,

That is,
In(1+2)>Topm_10(In(l+2))

for x > 0 and
In(1+2) <Top1o(In(l+2))

for —1 < x < 0. These results can be combined in the way described
in the question.
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