
Solutions to Question Sheet 8, Differentiation III. v1 2019-20

Taylor Polynomials

If f has n derivatives at a ∈ R then

Tn,af (x) =
n∑

r=0

f (r)(a)

r!
(x− a)r .

There are four questions asking you to calculating Taylor polynomials
and they all highlight a method that should simplify the work needed and
cut down the opportunity of making an error.

1. Calculate the Taylor polynomial

T6,0

(
sinx + cosx

1 + x

)
.

Hint Multiply up so you don’t have to differentiate rational functions.

Solution Let

f(x) =
sinx + cosx

1 + x
.

We don’t like fractions so multiply up and consider

(1 + x) f(x) = sinx + cosx.

We will differentiate this repeatedly to get

(1 + x) f (1)(x) + f(x) = cosx− sinx

(1 + x) f (2)(x) + 2f (1)(x) = − sinx− cosx

(1 + x) f (3)(x) + 3f (2)(x) = − cosx + sinx

(1 + x) f (4)(x) + 4f (3)(x) = sinx + cosx

(1 + x) f (5)(x) + 5f (4)(x) = cosx− sinx

(1 + x) f (6)(x) + 6f (5)(x) = − sinx− cosx.
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Put x = 0 to get

f(0) = 1

f (1)(0) + f(0) = 1

f (2)(0) + 2f (1)(0) = −1

f (3)(0) + 3f (2)(0) = −1

f (4)(0) + 4f (3)(0) = 1

f (5)(0) + 5f (4)(0) = 1

f (6)(0) + 6f (5)(0) = −1.

Solving these we find f(0) = 1, f (1)(0) = 0, f (2)(0) = −1, f (3)(0) = 2,

f (4)(0) = −7, f (5)(0) = 36 and f (6)(0) = −217.

Hence

T6,0

(
sinx + cosx

1 + x

)
= 1 + 0x− x2

2!
+ 2

x3

3!
− 7

x4

4!
+ 36

x5

5!
− 217

x6

6!

= 1− x2

2!
+ 2

x3

3!
− 7

x4

4!
+ 36

x5

5!
− 217

x6

6!
.

2. Calculate the Taylor polynomial

T8,0 (sinx coshx) .

Hint Look for a pattern in your derivatives. For the trigonometric
functions sin x and cos x you return to a function related to the original
function after differentiation at most 4 times. For hyperbolic functions
it is after 2 differentiations. Thus for f that are products of such
functions you might hope to see some connection between f and f (4).
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Solution Let f(x) = sinx coshx. Then

f (1)(x) = cosx coshx + sinx sinhx,

f (2)(x) = − sinx coshx + cosx sinhx

+ cosx sinhx + sinx coshx

= 2 cosx sinhx,

f (3)(x) = −2 sinx sinhx + 2 cosx coshx,

f (4)(x) = −2 cosx sinhx− 2 sinx coshx

−2 sinx coshx + 2 cosx sinhx

= −4 sinx coshx = −4f(x) .

From f (4)(x) = −4f(x) we quickly get

f (5)(x) = −4f (1)(x) ,

f (6)(x) = −4f (2)(x) ,

f (7)(x) = −4f (3)(x) ,

f (8)(x) = −4f (4)(x) = 16f(x) .

Hence f(0) = 0, f (1)(0) = 1, f (2)(0) = 0, f (3)(0) = 2, f (4)(0) = 0,

f (5)(0) = −4, f (6)(0) = 0, f (7)(0) = −8 and f (8)(0) = 0. Thus

T8,0 (sinx coshx) = 0 + 1x + 0x2 +
1

3
x3 + 0x4 − 1

30
x5 + 0x6 − 1

630
x7 + 0x8

= x +
1

3
x3 − 1

30
x5 − 1

630
x7.

3. Calculate the Taylor polynomial

T5,0

(
esinx

)
.

Hint Let f(x) = esinx and, because of the exponential function satisfies
dex/dx = ex, look for a connection between f and f (1).

Solution Let f(x) = esinx. Then by the Composition Rule for differ-
entiation

f (1)(x) = esinx cosx = f(x) cosx.
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Thus

f (2)(x) = f (1)(x) cosx− f(x) sinx,

f (3)(x) = f (2)(x) cosx− f (1)(x) sinx− f (1)(x) sinx− f(x) cosx

= f (2)(x) cosx− 2f (1)(x) sinx− f(x) cosx,

f (4)(x) = f (3)(x) cosx− f (2)(x) sinx− 2f (2)(x) sinx

−2f (1)(x) cosx− f (1)(x) cosx + f(x) sinx

= f (3)(x) cosx− 3f (2)(x) sinx− 3f (1)(x) cosx + f(x) sinx

Hopefully you can see a pattern (reminiscent of the Binomial Theo-
rem?) and the next in the list will be

f (5)(x) = f (4)(x) cosx−4f (3)(x) sinx−6f (2)(x) cosx+4f (1)(x) sinx+f(x) cosx.

Putting x = 0 and we find f(0) = 1, f ′(0) = 1 and

f (2)(0) = f (1)(0) = 1

f (3)(0) = f (2)(0)− f(0) = 0

f (4)(0) = f (3)(0)− 3f (1)(0) = −3,

f (5)(0) = f (4)(0)− 6f (2)(0) + f(0) = −3− 6 + 1 = −8.

Thus

T5,0

(
esinx

)
= 1 + x +

x2

2
− x4

8
− x5

15
.

4. Calculate the Taylor Polynomial

T4,0

(
ln (1 + x)

1 + x

)
.

Hint Again look at multiplying up and writing a derivative in terms
of earlier derivatives.

Solution Let

f(x) =
ln(1 + x)

1 + x
.
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Follow the hint and write (1 + x) f(x) = ln(1 + x). Then, taking the
derivative,

f(x) + (1 + x) f (1)(x) =
1

1 + x
.

Follow the hint yet again, and multiply up as

(1 + x) f(x) + (1 + x)2 f (1)(x) = 1.

Repeated differentiation gives

f(x) + 3 (1 + x) f (1)(x) + (1 + x)2 f (2)(x) = 0,

4f (1)(x) + 5 (1 + x) f (2)(x) + (1 + x)2 f (3)(x) = 0,

9f (2)(x) + 7 (1 + x) f (3)(x) + (1 + x)2 f (4)(x) = 0.

Substituting x = 0 gives

f(0) + f (1)(0) = 1,

f(0) + 3f (1)(0) + f (2)(0) = 0,

4f (1)(0) + 5f (2)(0) + f (3)(0) = 0,

9f (2)(0) + 7f (3)(0) + f (4)(0) = 0.

Starting with f(0) = 0 we get f (1)(0) = 1, f (2)(0) = −3, f (3)(0) =
−4 + 15 = 11 and f (4)(0) = 27− 77 = −50.

Hence

T4,0

(
ln(1 + x)

1 + x

)
= 0 + x− 3

x2

2!
+ 11

x3

3!
− 50

x4

4!

= x− 3

2
x2 +

11

6
x3 − 25

12
x4.
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Error Terms

The Remainder or Error Term in approximating a function by it’s Taylor
Polynomial is given by

Rn,af(x) = f(x)− Tn,af(x) .

In the notes we give bounds on Rn,af(x) which thus tell us how well
Tn,af(x) approximates f(x) . This is the subject of the next three questions.
But we can also deduce something from knowing that Rn,af(x) is of constant
sign as x varies; we get inequalities between f(x) and Tn,af(x) .

5. i. Prove that ∣∣∣∣sinx− x +
x3

6

∣∣∣∣ ≤ 1

4!
|x|4 , (1)

for all x ∈ R.

Hint the left hand side is |R3,0 (sinx)|.

ii. Deduce (without L’Hôpital’s Rule) that

lim
x→0

sinx− x

x3
= −1

6
.

Solution i. It is easy to check that

T3,0 (sinx) = x− x3

3!
,

so

sinx− x +
x3

3!
= sinx− T3,0 (sinx) = R3,0 (sinx) .

Let f(x) = sinx, then Lagrange’s form of the error gives

R3,0 (sinx) =
f (4)(c)

4!
x4,

for some c between x and 0. Yet
∣∣f (4)(c)

∣∣ = |sin c| ≤ 1, giving the
stated resultm (1).
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ii. Dividing through the stated result by |x|3 gives∣∣∣∣sinx− x

x3
+

1

3!

∣∣∣∣ ≤ 1

4!
|x| .

Let x→ 0 and we get

lim
x→0

sinx− x

x3
= −1

6
,

by quoting the Sandwich Rule.

6. For f(x) = ln (1 + x) , find the Taylor polynomial T5,0f(x) and calculate
T5,0f(0.2).

Use Lagrange’s form of the error for the remainder to estimate the error
in using T5,0f(0.2) to calculate ln 1.2.

Hence show that

0.18232000... < ln 1.2 < 0.18232709... .

Solution Repeated differentiation gives us

f(x) = ln(1 + x) , f(0) = 0,

f (1)(x) =
1

1 + x
, f (1)(0) = 1,

f (2)(x) = − 1

(1 + x)2
, f (2)(0) = −1,

f (3)(x) =
2

(1 + x)3
, f (3)(0) = 2,

f (4)(x) = − 6

(1 + x)4
, f (4)(0) = −6,

f (5)(x) =
24

(1 + x)5
, f (5)(0) = 24.

Thus

T5,0f(x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
.
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The approximation to f(0.2) = ln1.2 given by this polynomial is

T5,0f(0.2) = 0.2− (0.2)2

2
+

(0.2)3

3
− (0.2)4

4
+

(0.2)5

5

= 0.18233066... .

Also f (6)(x) = −5!/ (1 + x)6 and so Lagrange’s form of the error is

R5,0f(x) =
−x6

6 (1 + c)6
,

for some c between 0 and x. With x = 0.2 then 1/1.2 < 1/ (1 + c) < 1
and thus

−(0.2)6

6
< R5,0f(0.2) < − (0.2)6

6 (1.2)6
.

That is,

−0.00001066... < ln 1.2− T5,0f(0.2) < −0.0000035722... .

Hence
0.18232000... < ln1.2 < 0.18232709... .

In fact ln1.2 = 0182321556....

7. Use Taylor’s Theorem with f(x) =
√
x on [64, 66] and n = 1 along with

Lagrange’s form of the error to show that

1

8
− 1

1024
<
√

66− 8 <
1

8
− 1

1458
.

Solution With f(x) =
√
x, n = 1, a = 64 and Lagrange’s form of the

error, Taylor’s Theorem states

R1,64f(x) =
f (2) (c)

2!
(x− 64)2 ,

for some c between 64 and x. That is

f(x)− T1,64f(x) =
f (2) (c)

2!
(x− 64)2 ,
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or

f(x) = f(64) + f (1) (64) (x− 64) +
f (2) (c)

2!
(x− 64)2 .

With f(x) =
√
x we get

√
x =
√

64 +
(x− 64)

2
√

64
− (x− 64)2

8c3/2
.

Take x = 66 when 64 < c < 66 and

√
66−

√
64 =

(66− 64)

2
√

64
− (66− 64)2

8c3/2
=

1

8
− 1

2c3/2
.

To simplify matters think of c as lying between 64 and 81 (the smallest
square larger than 66), so

1

1458
<

1

2c3/2
<

1

1024
.

Thus
1

8
− 1

1024
<
√

66−
√

64 <
1

8
− 1

1458
.

In fact,
√

66− 8 =
1

8
− 1

1039.938...

Taylor Series

8. Calculate the Taylor Series for x coshx + sinhx with a = 0.

Solution i) Let f(x) = x coshx + sinhx. Then

f (1)(x) = x sinhx + 2 coshx

f (2)(x) = x coshx + 3 sinhx

f (3)(x) = x sinhx + 4 coshx

f (4)(x) = x coshx + 5 sinhx

f (5)(x) = x sinhx + 6 coshx

...
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The pattern is

f (r)(x) =

{
x sinhx + (r + 1) coshx if r is odd

x coshx + (r + 1) sinhx if r is even.

Thus

f (r)(0) =

{
(r + 1) if r is odd

0 if r is even.

Hence the Taylor Series for x coshx + sinhx with a = 0 is

∞∑
r=0

f (r)(0)
xr

r!
=

∞∑
r=0
r odd

(r + 1)
xr

r!
=
∞∑
n=0

2 (n + 1)

(2n + 1)!
x2n+1.

The first few terms are

2x +
2

3
x3 +

1

20
x5 +

1

630
x7 +

1

36288
x9 + ...

9. Prove that the Taylor series for cosine converges to cosx, i.e.

cosx = 1− x2

2!
+

x4

4!
− ... =

∞∑
r=0

(−1)r x2r

(2r)!
,

for all x ∈ R.

Solution Let f(x) = cos x. Let x ∈ R be given. Then for n ≥ 1

Rn,0 (cosx) =
f (n+1)(c)

(n + 1)!
xn+1

for some c between x and 0. Yet
∣∣f (n+1)(c)

∣∣ is either |sin c| or |cos c| ,
both of which are ≤ 1. Thus

|Rn,0 (cosx)| ≤ |x|n+1

(n + 1)!
→ 0

as n → ∞, since
{
|x|n+1 / (n + 1)!

}
n≥1 is a null sequence. Hence

Rn,0 (cosx) → 0 as n → ∞ and so the Taylor series for cosine con-
verges to cos x for all x ∈ R.
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Additional Questions

10. Assume the function f is n + 1 times differentiable with f (n+1) contin-
uous on an open interval containing a ∈ R. Prove that

lim
x→a

f(x)− Tn,af(x)

(x− a)n
= 0 and lim

x→a

f(x)− Tn,af(x)

(x− a)n+1 =
f (n+1)(a)

(n+1)!
.

(2)

Hint Consider Lagrange’s error.

Note these limits in special cases have been seen many times before.

(a) f(x) = sinx with T2,0 (sinx) = x is the subject of Question 5,

(b) f(x) = ex with T3,0 (ex) = 1 + x + x2/2 is the subject of Question
9 on Sheet 3.

(c) f(x) = sinhx with T2,0 (sinhx) = x is the subject of the same
question. To check that earlier answer

lim
x→0

sinhx− x

x3
= lim

x→0

sinhx− T2,0 (sinhx)

x3

=
1

3!

d3

dx3
(sinhx)

∣∣∣∣
x=0

by (2)

=
1

6
.

Solution For x lying in the interval around a in which f has n + 1
derivatives Lagrange’s error states that

f(x)− Tn,af(x) = Rn,af(x) =
f (n+1)(c)

(n + 1)!
(x− a)n+1

for some c lying between a and x. Therefore, for x 6= a,

f(x)− Tn,af(x)

(x− a)n+1 =
f (n+1)(c)

(n + 1)!
. (3)

Let x → a. Since c lies between a and x we also have c → a. We
are assuming f (n+1) is continuous at a so limc→a f

(n+1)(c) = f (n+1)(a).
Hence

lim
x→a

f(x)− Tn,af(x)

(x− a)n+1 =
f (n+1)(a)

(n + 1)!
.
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Then, rearranging (3),

f(x)− Tn,af(x)

(x− a)n
=

f (n+1) (c)

(n + 1)!
(x− a)→ 0

as x→ a, having used the Product Rule for limits, allowable since each
individual limit exists.

11. i. Prove that xn+1Rn,0 (ex) ≥ 0 for all x ∈ R.

Deduce that for all m ≥ 1 we have

ex ≥ T2m−1,0 (ex)

for all x ∈ R, while{
ex ≥ T2m,0 (ex) for x > 0

ex ≤ T2m,0 (ex) for x < 0.

Note this answers a question in the printed lecture notes, of showing
that

ex ≥ 1 + x +
x2

2
+

x3

6

for all x ∈ R while

ex > 1 + x +
x2

2
if x > 0 and ex < 1 + x +

x2

2
if x < 0.

ii. Prove that (−1)n xn+1Rn,0 (ln (1 + x)) ≥ 0 for all x > −1.

Deduce that for all n ≥ 1,

ln (1 + x) ≤ Tn,0 (ln (1 + x))

for −1 < x < 0 while if x > 0 then{
ln (1 + x) ≤ Tn,0 (ln (1 + x)) for odd n

ln (1 + x) ≥ Tn,0 (ln (1 + x)) for even n.
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Note These last results for x > 0 can be combined in

T2m,0 (ln (1 + x)) ≤ ln (1 + x) ≤ T2m+1,0 (ln (1 + x))

for all m ≥ 1. The case m = 1 is the content of Question 6, Sheet 7.

Solution i. For all x ∈ R there exists, by Lagrange’s form of the error
term, some c between 0 and x such that

Rn,0 (ex) =
ec

(n + 1)!
xn+1.

Then

xn+1Rn,0 (ex) =
ec

(n + 1)!

(
x2
)n+1 ≥ 0, (4)

for all x ∈ R, since ec > 0 for all c.

There are two cases.

If n is odd then n+1 is even so xn+1 ≥ 0 for all x. Thus, by (4),
Rn,0 (ex) ≥ 0. Writing n = 2m−1 this implies ex ≥ T2m−1,0 (ex) for all
x ∈ R.

If n is even then xn+1 ≥ 0 for all x > 0 and xn+1 ≤ 0 for all x < 0.
Thus, by (4), Rn,0 (ex) ≥ 0 if x > 0 and Rn,0 (ex) ≤ 0 if x < 0. Writing
n = 2m this implies ex ≥ T2m,0 (ex) for x > 0 and ex ≤ T2m,0 (ex) for
x < 0.

ii. For all x ∈ R there exists, by Lagrange’s form of the error term,
some c between 0 and x such that

Rn,0 (ln (1 + x)) =
(−1)n xn+1

(n+1) (1+c)n+1 .

Then

(−1)n xn+1Rn,0 (ln (1 + x)) =
(x2)

n+1

(n+1) (1+c)n+1 ≥ 0 (5)

for all x > −1, since 1+c > 0 for c > x > −1..

There are two cases.

If n is odd then (5) implies xn+1Rn,0 (ln (1 + x)) ≤ 0 for x > −1.
Again xn+1 ≥ 0 for all x so Rn,0 (ln (1 + x)) ≤ 0 for x > −1.
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Writing n = 2m− 1 this implies

ln (1 + x) ≤ T2m−1,0 (ln (1 + x))

for x > −1.

If n is even then (5) implies xn+1Rn,0 (ln (1 + x)) ≥ 0. As in Part i,
xn+1 ≥ 0 for all x > 0 and xn+1 ≤ 0 for all −1 < x < 0. Writing
n = 2m these imply

R2m,0 (ln (1 + x)) ≥ 0 for x > 0,

R2m,0 (ln (1 + x)) ≤ 0 for − 1 < x < 0.

That is,
ln (1 + x) ≥ T2m−1,0 (ln (1 + x))

for x > 0 and
ln (1 + x) ≤ T2m−1,0 (ln (1 + x))

for −1 < x < 0. These results can be combined in the way described
in the question.
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